

Reversing with OllyDbg
OFFENSIVE HACKING AND TACTICAL STRATEGY

KVA Sachintha | IT-16158528 | Reverse Engineering

May 1, 2019

PAGE 1

Tutorial 1 – Modifying Popup Title (VIDEO)

I’ve used OllyDbg to rename the popup dialog box’s name. This can be simply achieved by

searching for strings used within the program.

https://amodsachintha.github.io/assets/ohts-rev/tutorial1.mp4

PAGE 2

The search for referenced strings were done by right-clicking on the debugger window

with the module FirstPro loaded. The module “FirstPro” is the application we’re trying to

modify.

After the search was done, the referenced text “Dialog as Main” was found to be the Title

of the popup dialog.

The selected text was then edited.

PAGE 3

The red colored text in the ASCII strings shows that it was recently modified.

After this modification was done, the program was run. The popup dialog has the

modified text!

PAGE 4

Tutorial 2 – Bypassing Serial (VIDEO)

This executable asks for a serial in the registration dialog which I’ve used OllyDbg to

circumvent. The process is as follows.

Firstly, running the program with a wrong serial gave me a string namely “That serial is

incorrect” which I was able to search and find within the application module.

https://amodsachintha.github.io/assets/ohts-rev/tutorial2.mp4

PAGE 5

Double clicking on the relevant string moved me to the corresponding address on the

dissembler code.

Since the serial was being matched to validate it, I looked for Comparisons (CMP) on the

Assembly code. This revealed multiple CMP operators within the vicinity of the strings

that were searched.

Looking closely into the Jump (JNZ) call, the address it jumps to is 0x00401236, which

corresponds to the block of code that says “That serial is incorrect”.

PAGE 6

Since after each comparison there’s a Jump (JNZ) instruction to the “incorrect block” of

code, I toggled a breakpoint well before the comparisons happen. The motive for this was

to manually step into each instruction and block all Jumps (JNZ) to the “incorrect block”

of code.

After the breakpoint was set, the program was executed. After entering some arbitrary

string in the registration dialog, the breakpoint was triggered and execution was paused.

From that step onward, I manually stepped over instructions. Once a JNZ instruction was

reached, I manually averted the Jump into the call by altering the “Z” register in the

application preventing the Jump.

Jump
Taken

“Z” register is set to
jump

Toggle Z register to “1”,
this prevents the jump

Jump is
prevented

After repeating this process until all Jumps to the incorrect block was prevented, the

application was set to run normally.

PAGE 7

It then showed that the serial was correct. The Application is now CRACKED and

bypassed!

